Anti-Biofouling Coating Strategies

0
17

Bacterial adhesion and colonization are common occurrences that cause problems in a variety of settings. Surface hydrophilization has been popular in recent years as a new approach to preventing microbial colonization. Because a tightly bound layer of water acts as an energetic and physical barrier that effectively resists biological contamination processes, such as protein attachment, initial bacterial attachment, and subsequent biofilm formation, surface hydration layers induced by hydrophilic polymers can impart biological contamination resistance to surfaces.

Several hydrophilic polymers, such as poly(ethylene glycol) (PEG) and amphoteric-containing polymers, have been used as candidates for the creation of hydrophilic anti-biofouling coatings. Hydrophilic polymers, on the other hand, cannot be employed as coatings on their own due to their water solubility and poor mechanical durability.

3D-Grafted Coatings

Grafting hydrophilic polymers onto mechanically and chemically tough hydrophobic coatings is a common method for achieving targeted surface hydrophilicity and biological contamination resistance. Alfa Chemistry grafts poly(ethylene oxide) (PEO) into a cross-linked poly(2-vinyl pyridine) (P2VP) network using a new 3D grafting process that involves a reaction between PEO and the alkyl halogen groups in the P2VP pyridine ring. Due to the chemical potential gradient, when the PEO brushes on the surface are destroyed, the underlying PEO chain segments stored in the matrix spontaneously float out of the surface. In comparison to the usual scheme, the 3D grafted surface has a fourfold increase in durability under physiological settings.

Hierarchical Spheres-Based Coatings

Alfa Chemistry constructed a self-healing underwater coating through the assembly of layered microgel spheres. n Isopropylacrylamide (NIPAM), methacrylic acid (MAA), and poly(ethylene glycol) diacrylate (PEGDA) were first used to fabricate microgel spheres (MS), and then silica nanoparticles were added to obtain graded microgel spheres (HMS). Then, PMPS-b-(PHEMA-co-PMPC) hydrophilic block copolymer was grafted onto silica nanoparticles on HMS to achieve modified graded microgel spheres (MHMS). MHMS were subsequently spin-coated onto glass substrates and allowed to self-assemble, and then thermosetting acrylic polyurethane resins were spin-coated onto the MHMS layers to obtain durable biofouling-resistant coatings.

This coating maintains its underwater superoleophobicity even under the challenges of highly acidic or alkaline environments. Its remarkable self-healing properties are attributed to the swelling of MHMS and the replenishment of the surface by the hydrophilic copolymer when immersed in water.

Inorganic Nanoparticles-Reinforced Coatings

Hydrophilic polymer-grafted nanoparticles have been widely studied and applied as an easy-to-modify and highly versatile platform. Alfa Chemistry designs polymer shell structures around inorganic nanomaterials for combined durability and surface hydrophilicity. To generate superoleophobic and anti-biofouling coatings, we cast methacryloyloxypropyltrimethoxysilane (MPS)-SiO2/PNIPAM (N-isopropylacrylamide) hybrid nanoparticles (HNS) into epoxy resin (ER) adhesives by casting layer. In the intermediate layer, the ER serves as a physical support for hybrid nanoparticles and their hierarchical structure.

PEG, another commonly used hydrophilic polymer, can also be grafted onto silica nanoparticles. Examples include SiO2-PEG based acrylic polyurethane (APU) coatings for durable outdoor antifouling applications.